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LONG-TERM GOALS 

The long range scientific objectives of the proposed research comprise: (1) developing rigorous 
approaches to optimal combining satellite and drifter data with an output of a regional circulation 
model for accurate estimating the upper ocean velocity field and mixing characteristics such as 
relative dispersion and finite size Lyapunov exponent, (2) constructing and comprehensive testing 
computationally efficient estimation algorithms based on alternative parameterizations of uncer
tainty, (3) processing real data in the Adriatic and Ligurian Sea (MREA coastal experiments) via 
new techniques 

OBJECTIVES 

The objectives for the first year of research were:
 
- Developing and verifying data fusion algorithms for optimal estimating surface velocities from
 
tracer observations, Lagrangian data, and a circulation model output, based on the fuzzy logic
 
approach [1,2].
 
- Carrying out a comprehensive error analysis via theoretical and Monte Carlo methods.
 
- Constructing and testing compatibility measures between data and model.
 
- Testing the developed fusion algorithms by ’twin’ experiments via NCOM.
 
- Theoretical investigation of the absolute and relative dispersion (AD and RD) in the presence of
 
shear flow, which would help in constructing realistic algorithms for estimating these characteristics
 
from real data.
 
- Developing data fusion algorithms for estimating RD by combining model output, drifter obser
vations and images.
 

APPROACH 

I develop theoretical approaches to the data fusion problem in context of the possibility theory 
(fuzzy logic) and in the framework of the classical theory of random processes and fields covered 
by stochastic partial differential equations. I design computational algorithms derived from the 
theoretical findings. A significant part of the algorithm validation is their testing via stochastic 
simulations. Such an approach provides us with an accurate error analysis. Together with my 
collaborators from Rosenstiel School of Marine and Atmospheric Research (RSMAS), Consiglio 
Nazionale delle Ricerche (ISMAR, LaSpezia, Italy), Naval Research Laboratory (Stennis Space 
Center, Mississippi), ENEA (Rome, Italy), Koc University (Istanbul, Turkey) we implement the 
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algorithms in concrete ocean models such as QG, MICOM , and NCOM as well as carry out sta
tistical analysis of real data sets by means of new methods. 

WORK COMPLETED 

1. Data fusion for estimating surface velocities. 

Two efficient fuzzy logic based algorithms of combining tracer observations with a model output 
were developed and compared. Both methods appeal to the intersection D = Dm ∩ Do of the 
credibility regions for the estimated velocity vector coming from the model and observations re
spectively. The first algorithm called GC takes the geometrical center of D as a combined estimate 
of the unknown velocity, while the second one (CM) addresses the center of mass of D. A the
oretical error analysis was provided for the GC algorithm. The procedures were first tested on 
an idealized model of gyre superposed by a regular eddy structure, and then, in the framework 
of ’twin’ experiment with NCOM at a specific area of the Ligurian Sea. A compatibility measure 
between tracer data and a model output was suggested and analyzed. 

2. Mixing in the presence of shear 

A theoretical investigation of the absolute and relative dispersion in stochastic flows with constant 
drift gradients was conducted. In particular, different regimes for the relative dispersion were 
identified depending on the type of the mean velocity stagnation points ( hyperbolic or elliptic) 
and on the Hurst exponent characterizing the dynamics type (local or non-local). 

3. Fusion data for estimating RD. 

Theoretical relations between relative dispersion and statistical characteristics of a continuously 
distributed tracer were established to lay ground for data fusion procedures aiming at estimating 
RD from images. Similar relations were established between the finite size Lyapunov exponent 
(FSLE) and Eulerian characteristics of the underlying velocity field to estimate the former from 
tracer snapshots. A fusion algorithm has been developed for estimating RD by combining a model 
output, drifter data, and images which is based on ideas of fuzzy logic. 

RESULTS 

1. Principal results in developing and testing the GC and CM data fusion algorithms are as follows. 
- GC is computationally simpler, but less stable and less accurate than CM. The difference in sta
bility and accuracy is especially manifested near the boundary of the circulation region of interest. 
- The estimation error of GC is in very good agreement with the theory which predicts the im
provement with respect to the model output at least 30%. 
- Both algorithms demonstrated a high computational efficiency exceeding typical assimilation 
algorithms in several orders. 
- Satisfactory estimation results can be reached for the interval shorter than 6 hours between 
consecutive snapshots. For longer intervals the error goes out of control. 
- The data/model compatibility measure µ introduced as a complementary normalized distance be
tween the credibility regions Dm and Do turned out to be greatly helpful in interpreting estimation 
results. In particular, small values of µ in a particular place alarm on the model credibility in this 
place. 
Fig.1 illustrates the CM performance in a ’twin’ experiment with NCOM in a particular area of the 
Ligurian sea. Two outputs for May of 2007 separated by time interval of 7 days, were considered as a 
model and ’real’ velocity field. The main feature of the ’real’ circulation (first panel) comparatively 
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to the model (second panel) is an intensive stream in the right low corner. The relative model 
error, computed by averaging over the whole region, was σb = 0.5361. We added the ’unknown’ 
forcing to the tracer advection equation with known amplitude and used the tracer observations 
initially concentrated in a compact area to estimate the velocity. The CM estimate turns out to 
be pretty accurate (third panel) and fairly captures the right-low-corner current with the estimate 
error σe = 0.4713. 

The last panel illustrates the compatibility measure for this experiment. As one can see the 
compatibility is pretty low in the right-low corner which is due to the strong ’real’ stream in this 
area which is not captured by the model. So, it is not surprising that the estimate detects only 
little fragments of the stream. Another area of low compatibility along the northern and eastern 
boundaries might be related to artificial tracer boundary conditions in use. 

Real velocity field Model velocity field Estimated velocity field after 1 day (fuzzy, h=0.1), h=0.1, Er = 0.5361 , Er =0.4839 Compatibility measure µmod est
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Figure 1. Ligurian Sea example from left to right: 1) ’Real’ velocity. 2) Model 
velocity, σb = 0.5361. 3) Estimated velocity, σe = 0.4713. 4) Compatibility map of 

model and ’data’ 

2. Concerning with investigation of AD and RD for stochastic flows with shear, we addressed a 
new LSM developed by PI with the drift given by 

� � 
γ Ω 

U = Gx, G = 
−Ω −γ 

where Ω, γ > 0 are vorticity and stretching parameters respectively. The main results are the 
following. 
- It was proven that the inertial regime for both, RD and AD, exists if and only if the stagnation 
point x = 0 is of elliptic type, i.e. Ω > γ and the Lgrangian correlation time is small enough 
τ < 1/γ. 
- An exact expression for the absolute diffusivity tensor was found ant it was shown that its 
anisotropy exactly copies the anisotropy of the mean drift. The fluctuation parameters, such as 
the Lagrangian correlation time, velocity fluctuation variance, and the spin [3] affect only the 
magnitude of the diffusion. 
As for RD we mostly concentrated on the intermediate stage τ � t � T , where T is the particle 
pair separation time, and assumed a fast enough decay of the energy spectrum (Batchelor regime, 
[4]). 
- The well known exponential behavior of RD under the local dynamics [5] was established in the 
presence of the elliptic drift [6] similarly to the case of zero drift [7] 

ΛtD(t) ∼ Ke 

where D(t) is the relative dispersion tensor and Λ is the second Lyapunov exponent. 
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- We have shown that the anisotropy of K is determined by both factors, gradients of the mean 
flow and statistics of the velocity fluctuations. The crucial impact on the mixing ellipse orientation 
is produced by the normal component of the covariance. The growth rate Λ depends on the drift 
and fluctuation characteristics as well and can be partly investigated analytically. 

In Fig.2 we give examples of the RD curves for both local and non-local dynamics in a vicinity 
of both hyperbolic (Ω < γ, first panel) and elliptic (second panel) stagnation points as well as the 
dependence of Λ on the shear parameters Ω, γ (third panel) and on β, γ (fourth panel), where β 
is the characteristic wavenumber of the velocity fluctuations, i.e. β = 1/d with d standing for the 
space correlation scale of the velocity. 

−1 0 1 2 

Separation, τ=1, D=2000, k
0
=1/100, d

0
=0.1, α=0.1(black),1.1(red),1.9(blue), γ=0.1, Ω=0, ω =2, L=1000 

−1 0 1 2 
10

−2 

10
−1 

10
0 

10
1 

10
2 

10
3 

10
4 

10
5 

10

ρ
 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

β
 1
/3

 

Lyapunov second moment,Γ=3, Ω=2, ω=2 

2 

22 

2 

4 

44 

4 

6 

66 

6 

8 
88 

8 

10
1010 

−2 

−1.5 

−1 

−0.5 

0 

0.5 

1 

1.5 

2 

Ω
 

Lyapunov second moment,Γ=0.3, Incompressible mean flow, ω=1 

0.5 

0.5 

0.
5 

0.5
 

0.5

0.5
 

1 

1 

1 

1 

1 

1 

1 

1 

1.5 

1
.5

 

1.
5

1.5 

1
.5

 

1.
5 

2 

2
 

2 
2 

2
 

2

2.5 

2
.5

 

2.
5

2.5 

2
.5

 

2.
5 

3 

3
 

3 

3 3
.5

 

3
.5

3.5 

3
.5

 

4
 

6 

14
10

12
10

10
10

8
10

6
10

4
10

2
10

0
10

−2
10

ρ
 

10 10 10 10 −2 −1.5 −1 −0.5 0 0.5 1 1.5 210 10 10 10 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 
time time γ γ 

F igure 2. Relative dispersion in shear flows from left to right: 1) RD vs time and
 
different values of Hurst exponent h = 0.1 (black), h = 1 (red), h = 2 (blue)
 

γ = 0.1,Ω = 0, 2) Same for γ = 0.1,Ω = 2 ). 3) RD vs Ω and γ. 4)RD vs β and γ for
 
Ω = 2.
 

3. The following result is in the base of the derived fusion algorithm illustrated in Fig.3 for 
estimating the relative diffusivity (RD) by combining a model output, tracer and drifter obsevations. 

Figure 3: Schematic illustration of the fusion method for the RD estimate. 
Confidence regions for (Dx,Dy) defined from model experiments (yellow), drifter 

estimate (green) and tracer estimate (orange) have the common area (dark green) 
and the combined estimate is its center of mass 
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- Under wide conditions we proved that for small enough initial separation x0, y0 

2
0�θ


2 
x

2
0�θ


2� + y
Dx Dy x y
≥
 (1)
 +


22 2d
 d
 σ
θx y 

In (1) Dx and Dy are the RD zonal and meridianal components respectively, σ2 
θ is the variance
 

of the tracer θ(t, x, y), θx, θy its gradients, and dx, dy are its correlation scales in direction x and y 
respectively at t = 0 , the dependence of Dx,Dy, �θ

2 
x�, �θ


2� on t is meant.
 y

Relation (1) determines the orange confidence region. The center of mass (D̂x, D̂y) of the inter
section (dark green) of the three confidence regions is taken as a combined estimate of (Dx,Dy). 
Explicit expressions for estimates (D̂x, D̂y) were obtained as well. 

IMPACT/APPLICATIONS 

1. The suggested data fusion procedures for estimating surface velocities and relative dispersion 
from images, drifters, and a model output could be a supplement to existing assimilation algorithms 
explicitly involving OGCM. 
2. The developed theory of the dispersion in stochastic flows leads to better understanding turbu
lent mixing in the presence of shear flow 

TRANSITIONS 

The developed velocity fusion algorithm was used in RSMAS to test it in NCOM circulation model. 
It is planned to apply the method to real data in the Mediterranean by the same RSMAS group in 
collaboration with ISAC-CNR remote sensing group (Rome, Italy). 

RELATED PROJECTS 

1. ”Predictability of Particle Trajectories in the Ocean”, ONR, PI T.Ozgokmen , RSMAS, N00014
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